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ABSTRACT
Since its ambitious beginnings to create a hyperlinked information
system, the web has evolved over 25 years to become our primary
means of expression and communication. No longer limited to text,
the evolving visual features of websites are important signals of
larger societal shifts in humanity’s technologies, aesthetics, cultures,
and industries. Just as paintings can be analyzed to study an era’s
social norms and culture, techniques for systematically analyzing
large-scale archives of the web could help unpack global changes
in the visual appearance of websites and of modern society itself.
In this paper, we propose automated techniques for characterizing
the visual “style” of websites and use this analysis to discover and
visualize shifts over time and across website domains. In particular,
we use deep Convolutional Neural Networks to classify websites
into 26 subject areas (e.g., technology, news media websites) and 4
design eras. The features produced by this process then allow us
to quantitatively characterize the appearance of any given website.
We demonstrate how to track changes in these features over time
and introduce a technique using Hidden Markov Models (HMMs) to
discover sudden, signi�cant changes in these appearances. Finally,
we visualize the features learned by our network to help reveal the
distinctive visual elements that were discovered by the network.

CCS CONCEPTS
• Information systems → Surfacing; • Human-centered com-
puting → Web-based interaction; • Computing methodolo-
gies → Interest point and salient region detections; Super-
vised learning by classi�cation; Neural networks; • Mathematics of
computing → Kalman �lters and hidden Markov models;

KEYWORDS
Web Design, Deep Learning, Convolutional Neural Networks, Cul-
tural Analytics

1 INTRODUCTION
The advent of digital technologies has brought about a revolution in
analyzing and unpacking “culture.” Cultural Analytics is a relatively
new �eld that aims to study the humanities and other disciplines
through computational analysis of large-scale cultural data [16]. For
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example, work in cultural analytics has automatically analyzed pat-
terns in large historical and contemporary samples of art [25], pop
music [6], comic books [17], Vogue magazine covers [24], and archi-
tecture [14]. Ironically, however, perhaps the most important and
best re�ection of today’s “new media” [16] – the world wide web
itself – has had little examination through the lens of cultural ana-
lytics. There is growing recognition that such new media should be
preserved. For instance, The Internet Archive [4] attempts to store
a comprehensive history of the web, while the University of Michi-
gan Library houses the Computer and Video Game Archive [2]. The
web is now a �rst-class cultural artifact with at least one quarter of
a trillion archived pages across nearly 30 years [4].

Recent work has argued that analyzing the visual designs of web-
sites could provide a window into the evolution of the web, and
speci�cally how visual design re�ects changes in visual aesthet-
ics, role of technology, cultural preferences, and technical inno-
vations [8, 22]. Reinecke et al. [22, 23] de�ned speci�c low-level
metrics for quantifying visual properties of websites, such as color
distribution, amount of white space, and structure of page layout,
and developed a model of perceived visual complexity based on
these low-level measures. They used this technique to reveal cul-
tural preferences for particular aesthetic styles, for example. Chen
et al. [8] asked web designers, developers, and artists to view his-
torical collections of web pages and re�ect on the changes they
observed across time, and speci�cally to speculate on the web’s
design “periods” including the key changes and causes of changes
that have occurred over time. While limited in scope, these papers
represent a �rst step in understanding cultural patterns via analysis
of the visual designs of websites.

Although similar in many respects, the web has a number of key
di�erences from more traditional cultural artifacts. Automated stud-
ies of art and music tend to be limited by the quantity of available
data, while the number of web artifacts is essentially boundless,
with millions of new pages coming online each day. On one hand,
this may make it easier to �nd statistically-signi�cant general pat-
terns among all of the “noise” of individual web pages; on the other
hand, it makes manual study and organization of web design imprac-
tical. Moreover, unlike art and music, the web lacks well-developed
theories to compare and contrast visual design styles. We thus need
to develop automated techniques that can be used to characterize,
compare, and contrast visual design styles in a meaningful way.

In this paper, we take initial steps towards this goal and make four
key contributions, using recent progress in computer vision and
machine learning. We �rst ask how much “signal” can be derived
from the visual designs of websites – how much information about
cultural patterns are encoded solely in the visual appearance of
sites? We describe an approach in which we train state-of-the-
art classi�ers borrowed from computer vision, speci�cally deep
Convolutional Neural Networks (CNNs), to recognize the eras and



genres of web pages. Our results show that classi�ers are able to
classify websites by their genre by more than 4 times the baseline
and recognize website design era by 2.5 times the random baseline,
which indicates that modern computer vision can indeed discern
particular patterns from large scale datasets of website designs. The
results are accurate enough to suggest that visual appearance could
be an important signal for societal change as re�ected by the web.

Second, we show that the key features identi�ed by the classi�er
during this supervised learning task can be used to characterize
new web pages in an unsupervised way, without prede�ning hand-
crafted visual attributes. Intuitively, these features generate a new
visual similarity space that is automatic, objective, and potentially
more meaningful than metrics de�ned by human intuition. With
this framework, we can, for instance:

(1) Measure the visual design similarity between two pages.
How similar is a website to a prominent, trend-setting
website – how “Apple-like” is cnn.com?

(2) Measure the similarity of a given page to a particular genre
of website. How “news-site-like” or “entertainment-site-
like” is the visual design of cnn.com?

(3) Measure the similarity between a given page and a partic-
ular website era. How “modern” is the design of cnn.com?

Third, we present techniques for using these measures to per-
form cultural analytics over time at a large scale. We take historical
snapshots of a single website, as captured by the Internet Archive,
and characterize each individual snapshot using our objective met-
rics to give a (noisy) time series quantifying how the design has
changed over time. We then develop a Hidden Markov Model to
robustly identify sudden changes in the time series corresponding
to actual changes in visual design (and ignoring the day-to-day
changes caused by updates to content). This historical perspective
gives us a glimpse on how websites have evolved over time, which
could lead to broader, more fundamental insights on the relation of
visual design and society and culture. For instance, we could mea-
sure how a particular company’s website has become in�uential on
other websites’ designs (e.g., to what extent have companies sought
to emulate Apple’s aesthetics or vice versa?).

Lastly, we show that with our trained CNN, we can randomly
generate novel website designs by inverting the process, by using
the CNN to sample a design for a given point in the similarity space.
Such tools not only shed light on the most basic question of “what
does it mean to be a website design?” but also could serve to inspire
current website designers on the future of web design.

2 RELATEDWORK
While we are aware of very little work that tries to characterize
website design automatically across time and genres, the basic
idea of applying machine learning and data mining algorithms to
analyze websites is not new. Kumar et al. [12] introduced a data
mining platform called Webzeitgeist which used WebKit [1] to
generate features such as ratio, dominant colors, and number of
words. Webzeitgeist can extract useful information about a website,
but is based on HTML code and thus captures only a rough sense
of a page’s visual design. Many other papers classify the genre and
other properties of web pages from text (HTML) analysis (see Qi et
al. [20] for an overview). In contrast, our goal is to analyze websites

based on the way that people experience them: viewing the visual
appearance of a website and making inferences based only on it,
without examining the underlying HTML code.

Perhaps the closest line of work to ours is that of Reinecke et
al. [23] and Reinecke and Gajos [22], who design visual features
to measure properties of websites like color distribution, page lay-
out, amount of whitespace, etc. They proposed a model to predict
higher-level perceived visual properties of websites such as visual
complexity from these low-level features, and used them to char-
acterize cross-cultural di�erences and similarities in web design.
Similar to our study, their features are based on rendered images
as opposed to HTML. However, they rely on hand-engineered fea-
tures that may be subjective and not necessarily representative. In
contrast, we learn visual features in a data-driven way, and use
these to track changes in web design across genres and eras. The
two approaches are complementary: our automatic approach might
discover visual features that are hard to describe or would not oth-
erwise be apparent, whereas their features are explicitly tied to a
human perceptual model, which may make their results easier to
describe and interpret.

We also draw inspiration from the work of Chen et al. [8], who
interviewed experts and asked them to critique and group together
the design of prominent websites over time. Their study identi�ed
certain design elements or “markers” (such as search and naviga-
tion bar placement, color scheme, relative proportion of text and
imagery, etc.) that distinguished various “eras” of web design. The
study also suggested that web design evolution is driven by multi-
ple factors including technological developments (e.g., new HTML
capabilities and features), changing roles and functions of the web
over time, impression management of companies and individuals
(e.g., companies wishing to project con�dence, friendliness, etc.), as
well as changing aesthetic preferences. We use this non-technical
exploration of web design as the inspiration for our paper, which
seeks to study visual design automatically and objectively, at a large
scale.

Our work uses computer vision to de�ne visual features and
similarity metrics for comparing and characterizing web design.
Quantifying the similarity of images is a classic and well-studied
problem in computer vision. A traditional approach is for an expert
to engineer visual features, by hand, that they think are relevant
to the speci�c comparison task at hand, and then apply machine
learning to calculate the similarity of two images. Often these fea-
tures are specialized versions of more general features, such as
Scale Invariant Feature Transforms (SIFT) [15] which tries to cap-
ture local image features in a way that is invariant to illumination,
scale, and rotation. A disadvantage of these approaches is that they
are fundamentally limited by the programmer’s ability to identify
salient visual properties and to design techniques for quantifying
them.

More recently, deep learning using Convolutional Neural Net-
works (CNNs) has become the de facto standard technique for many
problems in computer vision. An advantage of this approach is that
it does not require features to be designed by hand; the CNNs in-
stead learn their own optimal features for a particular task from raw
image pixel data. These networks, introduced by LeCun et al. [13]
in the 1990’s for digit recognition, are very similar to traditional



feed-forward neural networks. However, in CNNs some layers have
special structures to implement image convolution or sub-sampling
operations. These deep networks with many alternating convolu-
tion and downsampling layers help make the classi�ers insensitive
to spatial structure of the image and recognize both global and
detailed image features. In 2012 Krizhevsky et al. [11] succeeded in
adapting LeCun et al.’s CNN idea for a more general class of images
using many more layers, very large training datasets with millions
of images [9], huge amounts of computational power with Graphics
Processing Units (GPUs), and innovations in network architecture.
Since then, CNNs have been successfully applied to a large range
of applications.

Here we show how to apply CNNs to the speci�c domain of web
design. Contemporaneous with our work, Jahanian et al. [10] have
also applied deep learning to website design, although they focus
on the classi�cation task of identifying a website’s era based on
its visual appearance. We take this idea a step further: we create
CNNs to classify particular genres and eras of websites, and then
use the trained features as data mining tools to characterize the
visual features of websites and how they change through time.

3 METHODOLOGY
Our overall goal is to analyze the archive of a website, consist-
ing of a time series of HTML pages, and characterize the changes
in its visual appearance over time, including �nding key transi-
tion points where the design changed. While we could analyze
the HTML source code directly to detect design changes, this is
di�cult in practice since the HTML itself may reveal little about
the physical appearance of a page: a page may be rewritten using a
new technology (e.g. CSS and JavaScript) such that the source code
is completely di�erent but the visual appearance is the same, or a
small change in the HTML (e.g. new background image) may create
a dramatically di�erent appearance. We thus chose to analyze the
visual characteristics of rendered pages, emulating how a human
user would see the page. The main challenge is that many pages
(e.g., news sites) are highly dynamic, so that nearly every piece of
content and most pixels in the rendered image change on a day-to-
day basis. We wish to ignore these minor variations and instead
�nd the major changes that correspond to evolutions in web site
design.

We use two techniques for addressing this challenge. First, we ex-
tract high-level visual features that have been shown to correspond
with semantically-meaningful properties using deep learning with
Convolutional Neural Networks [13]. These features abstract away
the detailed appearance of a page, and instead cue on more general
properties that may re�ect design, such as text density, color dis-
tribution, symmetry, busyness or complexity, etc. However, even
these abstract properties vary considerably on a highly dynamic
website, where content like prominent photos might change on a
daily basis. We thus also introduce an approach for smoothing out
these variations over time, in e�ect looking for major changes in
the “signal” as opposed to minor variations caused by “noise.” We
apply Hidden Markov Models, a well-principled statistical frame-
work for analyzing temporal and sequential data in domains like
natural language processing, audio analysis, etc.

3.1 Dataset
We began by assembling a suitably large-scale dataset of visual
snapshots (images) of webpages. Our dataset consists of (1) a large
number of current snapshots of a wide variety of websites orga-
nized by genre (news, sports, business, etc.), and (2) a longitudinal
collection of a large number of historical snapshots of a handful of
pages over time.

For the genre dataset, we used CrowdFlower’s URL categoriza-
tion dataset, which consists of more than 31,000 URL domains, each
hand-labeled with one of 26 genres [3]. We downloaded the HTML
code for each URL and then rendered the page into an image using
PhantomJS [5], a headless Webkit API [1], at a resolution of 1200 ×
1200 pixels. (We chose this resolution because it works well with
both the wide-screen format that many websites today support and
earlier, less technologically-advanced designs). For websites that
must be rendered at greater than 1200 pixels on either dimension
(as is frequently the case along the vertical dimension), we cropped
the snapshot.

For our second, longitudinal dataset, we collected snapshots for a
set of prominent websites with a long history (from the early 1990s
through the present) from the Internet Archive [4]. Unfortunately,
this set of websites is sparse since most well-known websites did
not exist or were not well-known before the 1990s (and thus were
not archived by the Internet Archive until more recently). Many
websites from the 1990s also disappeared after 2000. We chose the
same 9 websites studied by Chen et al. [8] as well as 26 additional
websites which were present in the 1990s (covering most of the gen-
res mentioned in the CrowdFlower dataset). In total, we captured
7,303 screenshots from our 35 chosen websites from archive.org,
spanning 1996 through 2013. We used the same process described
above for rendering these websites to images.

We acknowledge that our relatively small dataset introduces
limitations: a small dataset makes it di�cult to pinpoint the ac-
curacy and generalizability of a classi�er. Our intent, however, is
not to provide a robust, production-ready classi�er. Instead, our
results provide evidence that such classi�ers can indeed re�ect how
information valuable to cultural informatics are signaled purely by
a website’s aesthetics. We hope future work will build validated
CNNs or other models from which we can glean cultural signals.

3.2 Visual Features
For automatically and objectively measuring visual properties of
large-scale collections of web pages, we need to develop quantitative
measures of the visual appearance of a page. To do this, we �rst
develop a technique for measuring the visual similarity between
two rendered web page images, but in a way that attempts to ignore
minor di�erences between pages and instead focuses on overall
design.

In the Computer Vision community, deep learning with Con-
volutional Neural Networks (CNNs) has recently emerged as the
de facto standard image classi�cation technique, yielding state-of-
the-art results on almost all vision tasks [11]. The basic idea is
that unlike traditional approaches which use hand-designed visual
features and whose performance is thus limited by human skill
and intuition, CNNs learn the (hopefully) optimal low-level visual
features for a given classi�cation task automatically, directly from
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Figure 1: Frequency of website genres in our dataset

the raw image pixel data itself. Learning a CNN classi�er can thus
be thought of as simultaneously solving two tasks: (1) �nding the
right low-level features that are most distinctive and meaningful
for a particular domain, and (2) learning a classi�er to map these
features to a high-level semantic class or category.

We use this property of CNNs in the following way. We train a
classi�er to estimate properties of web pages, including their genre
and their “era” (when they were created), using visual features of
the page itself. We can measure performance of the classi�ers on
these tasks, but producing accurate classi�cations is not our goal. (If
it were our goal, we would just analyze the HTML source code itself
instead of using the rendered image.) Instead, our goal is to train a
classi�er so that the CNN learns the important low-level features
corresponding to visual style; we can then discard the classi�er
itself, and simply use these “optimal” features to compare websites
directly.

3.2.1 Network Details. More speci�cally, we train CNNs for
both genre and era classi�cation tasks using the dataset described
above. We use the popular AlexNet [11] CNN architecture, which
consists of 5 convolutional layers that can be thought of as feature
extractors, and 3 fully connected layers that classify the image
based on those features. Each convolutional layer applies a series of
�lters (which are learned in the training phase) of di�erent sizes to
the input image and then �nally pushes a 4096-d vector to the fully
connected layers for classi�cation. Since our dataset is not large
enough to learn a deep network from scratch (which has tens of
millions of parameters), we follow recent work [19] and initialize
our network parameters with those pre-trained on the ImageNet
dataset [9], and then “�ne-tune” the parameters on our dataset.

3.2.2 Classification Results. For website genre categorization,
the speci�c task was to classify each website into one of 26 di�erent
genre categories. We partitioned the dataset into training and test

subsets, using half of the websites for training and half for testing.
Since the frequency of classes was non-uniform (Figure 1), we
also balanced the classes in both training and testing, so that the
probability of randomly guessing the correct class is about 3.8%.
Our classi�er achieved about 16% correct classi�cation rate on this
task, i.e., four times the random baseline. These results may seem
low, but we stress the di�culty of the task: the classi�er only sees
the visual rendering of the website (no textual or other features),
and there is substantial noise in the dataset because many sites
could be labeled in multiple ways (e.g. is Sports Illustrated a sports
website or a news website?).

For website era categorization, we discretized time into four eras,
1996-2000, 2001-2004, 2005-2008, and 2009-2013, and again balanced
classes. We split the test and training sets by website, i.e. all of the
historical snapshots of cnn.com were in either the training set or
test set, since the task could be very easy if very similar snapshots
for the same site were in training and test sets. Here our CNN-based
classi�er achieved about 63% accuracy relative to a baseline of 25%,
or about 2.5 times baseline. This is again a relatively di�cult task
because pages near the end of one era can be easily misclassi�ed
as belonging to the beginning of the next era, for example. Table 1
shows a confusion matrix on this task, which con�rms that many
misclassi�cations occur in adjacent bins.

These results show that while the visual classi�ers are not perfect,
the fact that the recognition rates are signi�cantly higher than
baseline shows that they are learning meaningful visual features.
This suggests that our hypothesis of de�ning a similarity measure
for website visual design using these features may succeed.

3.2.3 Visualization. The above results suggest that features ex-
tracted by deeply-trained networks carry meaningful information
about visual style, but reveal little about what exactly this informa-
tion is. Of course, this is one of the major disadvantages of deep



Table 1: Confusion matrix for recognizing website era.

Predicted class
1996-2000 2001-2004 2005-2008 2009-2013

1996-2000 41 18 14 5
2001-2004 15 18 33 12
2005-2008 5 8 37 28
2009-2013 0 2 13 63

Figure 2: Heat maps showing which parts of a website sup-
port each of three di�erent class hypotheses, according to
the classi�er.

machine learning: it is very di�cult to interpret or “debug” the
parameters of a learned classi�er. One potential way of gaining
some insight is to create visualizations that try to reveal which
image features the network is actually cueing on.

We use a modi�cation of the technique of Zhou et al. [26] to do
this. Very brie�y, this technique inserts a general average pooling
layer into the network, which allows us to visualize the impor-
tance of each pixel as a heat map for each class. Although this
method successfully generates an attention map of the network, it
decreases the accuracy of the network by a few percentage points.
Our compromise solution to preserve accurate results is to train
both networks separately and substitute the convolutional layer
weights learned by the classic AlexNet in the attention map net-
work. This network has good results with both the classi�cation
and visualization of the attention maps. Figure 2 shows a sample
input website snapshot and the attention map of three di�erent
classes for this image. In these visualizations, red regions are the
most in�uential cues used by the network to conclude that the
image belongs to a speci�c class, and blue corresponds to less im-
portant regions. These generated heat maps help us �nd the most
important parts of each image for each class.

3.2.4 Website Generation. Although we trained our deep net-
works to extract features from websites and classify them into
categories, an interesting property of these networks is that they
can actually be run “in reverse” to generate novel exemplars. The
intuitive idea here is that the networks learn a mapping from visual
features into mathematical vectors in some high-dimensional space
and it is possible to reverse the process by generating a random
high-dimensional vector and then producing an image that has that
feature representation.

To do this, we use Generative Adversarial Networks (GANs) [21].
Figure 3 shows some examples. These images are, at least in theory,
novel website designs that do not appear in the training set but
have similar features to websites that are in the training set. We
believe that many of these designs seem quite plausibly “real,” al-
though it can be subjective. The network’s architecture also limits

the resolution of these generated images, so they appear blurry.
Nevertheless, such a technique could provide a means of inspiring
web developers, helping suggest new directions of visual design to
pursue.

3.3 Temporal Smoothing
Given a time series of a visual feature over time, like that shown in
Fig 8, our goal now is to segment into periods of generally homo-
geneous design. The challenge is to ignore spurious variations due
to day-to-day changes in site content (e.g. di�erent photos or text),
and instead identify more major, longer-term changes that re�ect
shifts in the underlying visual design. This problem is reminiscent
of �ltering problems in signal processing, where the goal is to re-
construct an underlying low-frequency signal in the presence of
added high-frequency noise.

Using this signal processing view, we initially tried applying a
low-pass �lter (e.g. a mean �lter or a Gaussian �lter) to the time
series of visual feature values. While this succeeded in smoothing
out the time series, it has the unfortunate e�ect of also smoothing
out the sharp changes in the signal that are the transitions we are
looking for. As shown, the problem is that a low-pass �lter imposes
the (implicit) assumption that the visual feature’s value on one
day should be almost the same as the value on the next, and does
not permit the occasional discontinuities caused by major design
changes.

We thus explored an alternative model that explicitly permits
discontinuities. Suppose that we wish to analyze a website over
a period of N days. For each day i , let fi denote the value of the
visual feature computed on the rendered image for that day, or the
special value ∅ if the value is bad or missing. We assume that the
value of this visual feature is a result of two di�erent forces: the
inherent design of the page, and the content on that day. We model
this as an additive process, i.e. fi = di + ci , where di represents the
value related to the design and ci is the “noise” caused by changes
in day-to-day content.

Our goal is to infer di , which we cannot observe, from the obser-
vations fi which can be observed. From a probabilistic perspective,
we want to �nd the values for d1,d2, . . . ,dN so as to maximize
their probability given the observations,

arg max
d1, ...,dN

P (d1, . . . ,dN | f1, . . . , fN ). (1)

To do this, we build a model that makes several assumptions; al-
though these assumptions are not likely to hold perfectly in practice,
we have found that they work well enough for our purposes in ana-
lyzing the noisy visual feature time series. We �rst assume that the
design in e�ect on any given day depends only on the design of the
day before it, i.e. di is independent from earlier days, conditioned
on di−1. This re�ects the assumption that a site’s design tends to
stay consistent over time and not, for example, �ip back and forth
between two designs on alternating days of the week. Second, we
assume that ci is independent from c j for any j , i , conditioned on
di . This means that content changes from one day to the next are
independent from one another. Taken together, and using Bayes’



Figure 3: Novel website designs generated automatically by our network. (Images are blurry because the network architecture
limits the resolution of generated images.)

law, these assumptions let us rewrite equation (1) as,

arg max
d1, ...,dN

P ( f1, . . . , fN |d1, . . . ,dN )P (d1, . . . ,dN )

P ( f1, . . . , fN )
(2)

= arg max
d1, ...,dN

P ( f1, . . . , fN |d1, . . . ,dN )P (d1, . . . ,dN ) (3)

= arg max
d1, ...,dN

N∏
i=1

P ( fi |di )
N∏
i=2

P (di |di−1) (4)

where the denominator can be ignored since it depends only on
observations, which do not depend on the values of di .

Equation (4) is a Hidden Markov Model, which are widely used
to analyze sequences in areas such as natural language process-
ing, speech recognition, robotics, computer vision, etc., and can be
solved e�ciently using the Viterbi algorithm. All that remains is for
us to de�ne the emission and transition probability distributions
(i.e. �rst and second terms of equation (4), respectively). For the
emission probability, we model ci as a zero-mean Gaussian distri-
bution, which assumes that day-to-day content changes modify the
visual feature of the page in a similar way to white noise in signal
processing (sometimes adding a bit, sometimes subtracting a bit),

P ( fi |di ) = N ( fi − di ; µ = 0,σ1),

with some constant variance σ1. For the transition probability dis-
tribution, we assume that on any given day, there is some small
probability p1 that the design changes, which causes an arbitrary
change in the visual feature di , while with probability 1 − p1, the
feature of the underlying design remains nearly the same (with the
change modeled by a Gaussian distribution with a small sigma),

P (di |di−1) = p1 +N (di ; µ = di−1,σ2).

We stress that our intention is not to create an accurate model
of the process by which design changes happen, but instead to
propose a reasonable enough model that it can be used to identify
potential design changes automatically. The constants p1, σ1, and
σ2 are parameters of our analysis technique, and can be used to
adjust the type of results that are found. For instance, increasing p1
permits the technique to �nd more frequent design changes, but is
also more likely to respond to random noise patterns. Increasing
σ1 or σ2 allows greater �exibility in the observed visual feature
relative to the underlying design feature, but again is likely to cause

more noise. For our analyses in this paper, we set p1 = 0.1, σ1 = 1.0,
and σ2 = 0.01.

4 RESULTS
We now present results of our analysis techniques on our corpus of
webpages. Since CNNs hide the “logic” behind their reasoning in a
“black box,” we �rst present visualizations that elucidate the features
of the trained deep network itself. Next, we demonstrate application
of our deep learning with website designs to cultural analytics. In
this set of analyses, we examine the degree that visual designs of
websites resemble other websites over time. We show how this can
be applied to individual websites and a group of websites. Lastly,
we propose that our deep network can also serve to inspire the
future by generating new website designs that encapsulate the
visual aesthetics of a speci�c era or category.

4.1 Visualizing Features of the Network
We visualized the output of the neurons to understand how the deep
network recognizes the era and genre of the website. We found that
in most cases, these features at least resemble what humans might
look for when performing the same task.

4.1.1 Features for Era. Figure 4(a) depicts the attention map of
the “1990s website” class. The visualizations suggest that the mar-
gins (the white areas) on the right side and the bottom of the image
are the most important parts for this class. By “most important,” we
mean the part of the image that is most in�uential for the classi�er
in reaching a conclusion that the design is from the 1990s. Thus,
one possible interpretation is that the network believes margins
are a key marker for 1990’s-era websites.

In contrast, Figure 4(b) shows that the attention map of the “2009-
2013” class has multiple areas of visual importance. Many websites
in this class encompass the entire browser frame; we surmise that
an image that �lls up the frame is important for the network. In-
terestingly, the visualization also points to a growing importance
in designs that prominently feature computer technologies (e.g.,
laptops, tablets, and smartphones). For instance, in apple.com we
see that their products increasingly take up a larger proportion of
a website’s space over time (Figure 5).

4.1.2 Features for Genre. In recognizing a website’s genre, it
appears that speci�c objects get the attention of the network. For



Adobe.com in 1997 Apple.com in 1999
(a) 1990’s class

Apple.com in 2009 Xerox.com in 2013
(b) 2003-2013 class

Figure 4: Heat maps showing the importance of various im-
age features in reaching the conclusion that the websites are
from (a) the 1990’s and (b) 2009-2013.

2001 2004 2008 2013

Figure 5: Changing product sizes in Apple.com’s design
through time.

bmw.com.tr browneyedbaker.com

Figure 6: A website from automotive class (left) and a web-
site from food and drink class (right), and the network’s
attention for recognizing the classes.

example, our sports website classi�er seems to focus on sports
objects such as basketballs, baseballs, bicycles, and so on. This same
observation follows for the food and drink, automotive, home and
garden, pets and animals, and adult genres. Figure 6 shows some
examples.

4.2 Web Designs Across Eras
We characterize the changing appearance of a website over time
by comparing its appearance to a small number of exemplar sites.
We chose �ve websites as our exemplars: apple.com, msn.com,
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Figure 7: Similarity of indiana.edu to each canonical site.

cnn.com, slac.stanford.edu, and whitehouse.gov. We chose
these as “canonical” pages because they are regarded as leaders in
the technology and design industry. For instance, apple.com and
msn.com are regarded by some as interaction design pioneers. One
hypothesis is that, just as their products have been in�uential, their
website designs may have in�uenced other organizations’ websites.

For example, Figure 7 shows the similarity of one particular aca-
demic website, indiana.edu, to these �ves sites over time. We see
that slac.stanford.edu (another academic website) is the most
similar website among our �ve exemplars. This is intuitive since a
university’s web design should most resemble another university’s
website versus websites of companies in the technology and design
industry. (Note that in all of our plots, the absolute y-axis units are
not really meaningful for either the raw similarity scores or the
HMM outputs, so we focus on examining the relative values and
trends over time.)

The web portal yahoo.com, founded in 1994, has a particularly
long history. Since yahoo.com and msn.com are both portal web-
sites, we might expect the two to be alike across eras, and Fig-
ure 8(a) veri�es this similarity for nearly six years, until 2010 when
it became more similar to apple.com. This behavior is even more
apparent in the results smoothed by the Hidden Markov Model
in Figure 8(b). Note that our dataset is missing snapshots from
yahoo.com between 2006 and 2010. This explains why the lines
have no �uctuation during this period on both graphs in Figure 8.
Yahoo is also judged to be similar to whitehouse.gov initially, but
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Figure 8: Similarity of yahoo.com to each canonical site.

loses that similarity over time. This is consistent with the observa-
tion that websites of some genres initially looked like each other
but became more diverse as the web evolved.

Figure 9(a) repeats this analysis for amazon.com. We observe
that similarity to apple.com has increased while it has become less
similar to the other websites. Figure 9(b) starkly shows that this
move began shortly before 2004. This phenomenon may be because
both websites have followed the design trend of featuring large
product images, which caused the network to recognize them as
very similar to each other.

Lastly, to give a sense for how design on the web has changed
in general, we took the “basket” of 35 pages in our dataset and
compared all of them (aggregated together) to the �ve canonical
pages. Figure 10 shows that websites were similar to Microsoft for
nearly eight years but Apple gradually became dominant after 2005.
We may speculate that the visual designs of Microsoft’s website
was globally representative or in�uential of the web, but after some
time the designs of Apple better represented the state of visual
design on the web.

4.3 Multi-Genre Classi�cation
Categorization of websites into particular genres is not an exact
science. Many websites (especially contemporary ones) now serve
a number of di�erent purposes: bloomberg.com could be easily
categorized as, for example, a �nancial, news, or media website.
Thus instead of requiring the classi�er to produce a single genre
estimate for each page, we ask it for �ve hypotheses along with
the con�dence of each class. These con�dences re�ect the extent to
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Figure 9: Similarity of amazon.com to each canonical site.

which the network believes a given site belongs to a given genre.
For example, con�dences of the network for seven categories and
seven classes are shown in Figure 11. If we were to take the highest
con�dence genre, our classi�er yields some good results: shopping
for amazon.com, computer for apple.com, adult for pornhub.com,
and �nance for bloomberg.com. More importantly, however, we
also observe some intuitive con�dence values for multiple genres:
espn.com has high scores for both sports and news, for example.

Thus, a strength of our techniques is in showing a more nuanced
view on which multiple genres are signaled by the visual designs
of websites. That is, we may speculate that there is probably some-
thing inherent in visual designs that suggests certain genres and
that, more intriguingly, these designs can also suggest a mixture of
genres.

4.4 Generating NewWebsite Designs
The utility of a deep network lies in its ability to uncover patterns to
classify images. Yet one innovative function of a trained network is
its power to use its learned features to “hallucinate” an entirely new
image based on the snapshots in the training data. Figure 12 shows
images generated by the network trained on snapshots of about
17,000 contemporary websites. Each image is generated by a random
point in the similarity space. We observe that the new images
“look” a lot like real designs. This is a highly subjective observation;
nevertheless, the method could potentially give designers not only
a tool to analyze which features are important for each genre or
each design era, but also a framework to �nd inspirations for new
designs. For example, such a network can generate multiple images
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Figure 10: Similarity of all 35 websites in our corpus, aggre-
gated together, to each of our 5 canonical sites.
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Figure 11: Con�dence of the network for seven websites on
seven genres.

as templates for designing a news or shopping website, which in
turn could serve as a basis for designers to creatively build their
own website.

Figure 12: Websites generated by our GAN network.

5 CONCLUSION AND FUTUREWORK
In recent years, deep learning and large-scale datasets have helped
arti�cial intelligence meet or surpass human abilities in some nar-
row tasks [18]. It remains a question to what degree arti�cial intel-
ligence can support and complement the arts and humanities. In
this paper, we take �rst steps towards answering, computationally,
a question we often ask ourselves when viewing any visual object
created by people: irrespective of its context (e.g., creator, history,
circumstances) can we �nd real meaning in the image itself? In
some respects, we might claim that our algorithm adheres to the phi-
losophy behind formalism [7], that what matters in art is contained
purely in the art piece itself. Thus, we believe our work represents
an application of computer vision and machine learning that takes
notions of art and design seriously. The techniques we introduce
in this paper could complement and add to extant theories in the
humanities.

We have begun to develop techniques that researchers can use
to study large-scale collections of web pages, from a design per-
spective, without analyzing all pages manually. In particular, we
have shown how CNNs could provide quantitative measures of
website design styles, how to compare these designs, chart their
evolution over time, and �nd transition points among these noisy
signals. We have also showed how novel designs could be sampled
from the CNN. Future work can include a more detailed analysis of
the feature(s) being cued on by the CNN, as well as application to
larger and broader datasets. We hope that our work can be a step
towards developing practical tools for Cultural Analytics and some
day lead to �nding patterns and insights into the study of culture
that would not be possible to �nd through human analysis alone.
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