
An Early Rico Retrospective: Three
Years of Uses for a Mobile App Dataset

Biplab Deka, Bardia Doosti, Forrest Huang, Chad Franzen,
Joshua Hibschman, Daniel Afergan, Yang Li, Ranjitha Kumar, Tao Dong,
and Jeffrey Nichols

Abstract The Rico dataset, containing design data from more than 9.7k Android
apps spanning 27 categories, was released in 2017. It exposes visual, textual, struc-
tural, and interactive design properties of more than 72k unique UI screens. Over the
years since its release, the original paper has been cited nearly 100 times according
to Google Scholar and the dataset has been used as the basis for numerous research
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projects. In this chapter, we describe the creation of Rico using a system that com-
bined crowdsourcing and automation to scalably mine design and interaction data
from Android apps at runtime. We then describe two projects that we conducted
using the dataset: the training of an autoencoder to identify similarity between UI
designs, and an exploration of the use of Google’s Material Design within the dataset
using machine learned models. We conclude with an overview of other work that
has used Rico to understand our mobile UI world and build data-driven models that
assist users, designers, and developers.

1 Introduction

We created the Rico1 dataset and released it publicly in 2017 [21]. We believe it is
still the largest repository of Android mobile app designs, comprising visual, textual,
structural, and interactive property data for 72,219 UIs from 9,772 apps, spanning
27 Google Play categories. For each app, Rico presents a collection of individual
user interaction traces, as well as a collection of unique UIs determined by a novel
content-agnostic similarity heuristic. In total, the dataset contains more than 72k
unique UI screens.

To download the Rico dataset and learn more about the project, please visit http://
interactionmining.org/rico.

To understand what makes Rico unique, it is helpful to consider it in the context of
other Android app datasets. Existing datasets expose different kinds of information:
Google Play Store metadata (e.g., reviews, ratings) [2, 25], software engineering and
security related information [24, 52], and design data [7, 22, 45]. Rico captures both
design data and Google Play Store metadata.

Mobile app designs comprise several different components, including user inter-
action flows (e.g., search, login), UI layouts, visual styles, and motion details. These
components can be computed by mining and combining different types of app data.
For example, combining the structural representation of UIs—Android view hierar-
chies [3]—with the visual realization of those UIs—screenshots—can help explicate
app layouts and their visual stylings. Similarly, combining user interaction details
with view hierarchies and screenshots can help identify the user flows that apps are
designed to support.

Figure1 compares Rico with other popular datasets that expose app design infor-
mation. Design datasets created by statically mining app packages contain view
hierarchies, but cannot capture data created at runtime such as screenshots or inter-
action details [7, 45]. ERICA’s dataset, on the other hand, is created by dynamically
mining apps and captures view hierarchies, screenshots, and user interactions [22].

Like the ERICA dataset, Rico is created by mining design and interaction data
from apps at runtime. Rico’s data was collected via a combination of human-powered
and programmatic exploration, as shown in Fig. 2. Also like ERICA, Rico’s app

1 Rico—a Spanish word meaning “rich”.
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Fig. 1 A comparison of Rico with other popular app datasets

mining infrastructure requires no access to—or modification of—an app’s source
code. Apps are downloaded from the Google Play Store and served to crowd workers
through a web interface. When crowd workers use an app, the system records a user
interaction trace that captures the UIs visited and the interactions performed on
them. Then, an automated agent replays the trace to “warm up” a new copy of the
app and continues the exploration programmatically. By combining crowdsourcing
and automation, Rico can achieve higher coverage over an app’s UI states than either
crawling strategy alone.

Rico is four times larger than the ERICA dataset and presents a superset of its
design information. Rico also exposes an additional view of each app’s design data:
while ERICA provides a collection of individual user interaction traces for an app,
Rico additionally provides a list of the unique UIs discovered by aggregating over
user interaction traces and merging UIs based on a similarity measure. This repre-
sentation is useful for training machine learning models over UIs that do not depend
on the sequence in which they were seen. Lastly, Rico annotates each UI with a low-
dimensional vector representation that encodes layout based on the distribution of
text and images, which can be used to cluster and retrieve similar UIs from different
apps.

We chose to release the Rico dataset publicly as we believed others in the research
community might benefit from it, and we were especially optimistic that the dataset
would find use because it is large enough to support deep learning applications. We
envisioned that the dataset would be used for applications related to user interface
design, such as UI layout generation and UI code generation, similar to the directions
that we were pursuing when we created it. To our surprise, the community has
found much broader use cases for the dataset than we could have imagined. Over
the years since Rico’s release, the original paper [21] has been cited nearly 100
times according to Google Scholar and the dataset has been used as the basis for
numerous research projects, including explorations of the usage of specific features
within the app ecosystem [39, 44], the creation of intelligent assistants [47], and
mapping natural language to UI actions [34]. The dataset has also been extended
by a number of research groups, who have added semantic metadata [37], language
mappings [34], UI embeddings [38], and more. We will examine these use cases and
develop a preliminary taxonomy later in the chapter.

In this chapter, we begin by describing the creation of Rico using a system that
combined crowdsourcing and automation to scalably mine design and interaction
data from Android apps at runtime. We then describe two projects that we conducted
using the dataset: the training of an autoencoder to identify similarity between UI
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Fig. 2 Rico is a designdatasetwith 72kUIsmined from9.7k freeAndroid apps using a combination
of human and automated exploration. The dataset can power a number of design applications,
including ones that require training state-of-the-art machine learning models
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designs, and an exploration of the use of Google’s Material Design within the dataset
using machine learned models. We conclude with an overview of other work that
has used Rico to understand our mobile UI world and build data-driven models that
assist users, designers, and developers.

2 Collecting Rico

To create Rico, we developed a platform that mines design data from Android apps
at runtime by combining human-powered and programmatic exploration. Humans
rely on prior knowledge and contextual information to effortlessly interact with a
diverse array of apps. Apps, however, can have hundreds of UI states, and human
exploration clusters around common use cases, achieving low coverage over UI
states for many apps [10, 22]. Automated agents, on the other hand, can be used to
exhaustively process the interactive elements on a UI screen [13, 50]; however, they
can be stymied by UIs that require complex interaction sequences or human inputs
(Fig. 3) [8].

We developed a hybrid approach for design mining mobile apps that combine the
strengths of human-powered and programmatic exploration: leveraging humans to
unlock app states that are hidden behind complex UIs and using automated agents
to exhaustively process the interactive elements on the uncovered screens to dis-
cover new states. The automated agents leverage a novel content-agnostic similarity
heuristic to efficiently explore the UI state space. Together, these approaches achieve
higher coverage over an app’s UI states than either technique alone.

Fig. 3 Automated crawlers are often stymied by UIs that require complex interaction sequences,
such as the three shown here
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2.1 Crowdsourced Exploration

The crowdsourced mining system uses a web-based architecture similar to
ERICA [22]. A crowd worker connects to the design mining platform through a
web application, which establishes a dedicated connection between the worker and
a phone in our mobile device farm. The system loads an app on the phone and starts
continuously streaming images of the phone’s screen to the worker’s browser. As the
worker interacts with the screen on his browser, these interactions are sent back to
the phone, which performs the interactions on the app.

We extended the ERICA architecture to enable large-scale crowdsourcing over the
Internet. We added an authorization system that supports both short- and long-term
engagement models. For micro-task style crowdsourcing on platforms like Amazon
Mechanical Turk, we generate URLs with tokens. When a worker clicks on a URL
with a valid token, the system installs an app on a device and hands over control to
the user for a limited time. To facilitate longer term engagements on platforms such
as UpWork, we provide a separate interface through which workers can repeatedly
request apps and use them. This interface is protected by a login wall, and each
worker is provided separate login credentials.

We show the web interface in Fig. 4. To ensure that no personally identifiable
information is captured, the web interface provides a name, email address, location,
and phone number for crowd workers to use in the app. It also displays emails or text
messages sent to the specified email addresses and phone numbers, letting crowd
workers complete app verification steps with minimal effort.

Fig. 4 Our crowd worker web interface. On the left, crowd workers can interact with the app
screen using their keyboard and mouse. On the right, there are provided instructions and details
such as the name, location, phone number, and email address to use in the app. The interface also
allows workers to access SMS and email messages sent to the provided phone number and email
to complete app verification processes
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2.2 Automated Exploration

To move beyond the set of UI states uncovered by humans, Rico employs an auto-
mated mining system. Existing automated crawlers hard-code inputs for each app
to unlock states hidden behind complex UIs [8, 33]. We achieve a similar result by
leveraging the interaction data contained within the collected user traces: when the
crawler encounters an interface requiring human input, it replays the interactions that
a crowd worker performed on that screen to advance to the next UI state.

Similar to prior work [8, 33], the automated mining system uses a depth-first
search strategy to crawl the state space of UIs in the app. For each unique UI, the
crawler requests the view hierarchy to identify the set of interactive elements. The
systemprogrammatically interactswith these elements, creating an interaction graph
that captures the unique UIs that have been visited as nodes and the connections
between interactive elements and their resultant screens as edges. This data structure
also maintains a queue of unexplored interactions for each visited UI state. The
system programmatically crawls an app until it hits a specified time budget or has
exhaustively explored all interactions contained within the discovered UI states.

2.3 Content-Agnostic Similarity Heuristic

After Rico’s crawler interacts with a UI element, it must determine whether the
interaction led to a new UI state or one that is already captured in the interaction
graph. Database-backed applications can have thousands of views that represent the
same semantic concept and differ only in their content (Fig. 5). Therefore, we employ
a content-agnostic similarity heuristic to compare UIs.

Fig. 5 Pairs of UI screens from apps that are visually distinct but have the same design. Our content-
agnostic similarity heuristic uses structural properties to identify these sorts of design collisions
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This similarity heuristic compares two UIs based on their visual and structural
composition. If the screenshots of two given UIs differ by fewer than α pixels, they
are treated as equivalent states. Otherwise, the crawler compares the set of element
resource-ids present on each screen. If these sets differ bymore thanβ elements,
the two screens are treated as different states.

We evaluated the heuristic with different values of α and β on 1,044 pairs of UIs
from 12 apps. We found that α = 99.8% and β = 1 produce a false positive rate of
6% and a false negative rate of 3%. We use these parameter values for automated
crawling and computing the set of unique UIs for a given app.

2.4 Coverage Benefits of Hybrid Exploration

To measure the coverage benefits of our hybrid exploration approach, we compare
Rico’s crawling strategy to human and automated exploration alone. We selected 10
apps (Fig. 6) from the top 200 on the Google Play Store. Each app had an average
rating higher than 4 stars (out of 5) and had been downloaded more than a million
times.We recruited 5 participants for each app and instructed them to use the app until
they believed they had discovered all its features.We then ran the automated explorer
on each app for three hours, after warming it up with the collected human traces.

Prior work [1, 10, 22] measured coverage using Android activities, a way of
organizing an Android app’s codebase that can comprise multiple UI screens. While
activities are a useful way of statically analyzing an Android app, developers do

Fig. 6 The Android apps used in our evaluation. Each had a rating higher than 4 stars (out of 5)
and more than 1M downloads on the Google Play store
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Fig. 7 The performance of our hybrid exploration system compared to human and automated
exploration alone, measured across ten diverse Android apps

not use them consistently: in practice, complex apps can have the same number of
activities as simple apps. In contrast, we use a coverage measure that correlates with
app complexity: computing coverage as the number of unique UIs discovered under
the similarity heuristic.

Figure7 presents the coverage benefits of a hybrid system: combining human
and automated exploration increases UI coverage by an average of 40% over human
exploration alone and discovered several new Android activities for each app. For
example, on the Etsy app, our hybrid system uncovered screens from 7 additional
Activities beyond the 18 discovered by human exploration.

We also evaluated the coverage of the automated system in isolation, without
bootstrapping it with a human trace. The automated system achieved 26% lower
coverage across the tested apps than Rico’s hybrid approach. This poor performance
is largely attributable to experiences that are gated beyond a login screen or paywall
that our pure, automated approach cannot handle. For instance,Todoist andWeHeartIt
hide most of their features behind a login wall.

3 The Rico Dataset

The Rico dataset comprises 10,811 user interaction traces and 72,219 unique UIs
from 9,772 Android apps spanning 27 categories (Fig. 8). We excluded from our
crawl categories that primarily involve multimedia (such as video players and photo
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Fig. 8 Summary statistics of the Rico Dataset: app distribution by a category, b average rating, and
c number of mined interactions. d The distribution of mined UIs by number of interactive elements

editors) as well as productivity and personalization apps. Apps in the Rico dataset
have an average rating of 4.1 stars and data pertaining to 26 user interactions.

3.1 Data Collection

To create Rico, we downloaded 9,772 free apps from the Google Play Store and
crowdsourced user traces for each app by recruiting 13 workers (10 from the US, 3
from the Philippines) on UpWork.We chose UpWork over other crowdsourcing plat-
forms because it allowsmanagers to directly communicate with workers: a capability
that we used to resolve any technical issues that arose during crawling.We instructed
workers to use each app as it was intended based on its Play Store description for no
longer than 10min.

In total, workers spent 2,450h using apps on the platform over five months,
producing 10,811 user interaction traces. We paid US $19, 200 in compensation
or approximately two dollars to crowdsource usage data for each app. To ensure
high-quality traces, we visually inspected a subset of each user’s submissions. After
collecting each user trace for an app, we ran the automated crawler on it for one hour.

3.2 Design Data Organization

For each app, Rico exposes Google Play Store metadata, a set of user interaction
traces, and a list of all the unique discovered UIs through crowdsourced and auto-
mated exploration. The Play Store metadata includes an app’s category, average
rating, number of ratings, and number of downloads. Each user trace is composed
of a sequence of UIs and user interactions that connect them. Each UI comprises a
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screenshot, an augmented view hierarchy, a set of explored user interactions, a set of
animations capturing transition effects in response to user interactions, and a learned
vector representation of the UI’s layout.

View hierarchies capture all of the elements comprising a UI, their properties, and
relationships between them. For each element, Rico exposes its visual properties
such as screen position, dimensionality, and visibility; textual properties such as
class name, id, and displayed text; structural properties such as a list of its children
in the hierarchy; and interactive properties such as the ways a user can interact
with it. Additionally, we annotate elements with any Android superclasses that they
are derived from (e.g., TextView), which can help third-party applications reason
about element types. Rico contains more than 3M elements, of which approximately
500k are interactive. On average, each UI comprises eight interactive elements.

4 Our Uses of Rico

Having created the Rico dataset, we then made use of it in several different projects.
Two of these projects are described here: the training of a UI layout embedding using
an autoencoder, and an investigation of the usage of Material Design. We also built
a system called Swire [27], which allowed users to investigate the Rico dataset by
sketching a full or partial user interface and using that sketch as a search query over
the dataset. Swire is described in more detail in Chapter 12 of this book.

4.1 Training a UI Layout Embedding

The large size of the Rico dataset makes it difficult to browse comprehensively, so in
this work, we set out to create a method that would allow users to search the dataset.
As a starting point, we allow users to use a screenshot of a mobile UI as their query.

Since theRico dataset is large and comprehensive enough to support deep learning
applications, we trained a deep autoencoder to learn an embedding for UI layouts
and used it to annotate each UI with a 64-dimensional vector representation encoding
visual layout. This vector representation can be used to compute structurally—and
often semantically—similar UIs, supporting example-based search over the dataset
(see figures in the original Rico paper [21]).

An autoencoder is a neural network that involves two models—an encoder and
a decoder—to support the unsupervised learning of lower-dimensional represen-
tations [12]. The encoder maps its input to a lower-dimensional vector, while the
decoder maps this lower-dimensional vector back to the input’s dimensions. Both
models are trained together with a loss function based on the differences between
inputs and their reconstructions. Once an autoencoder is trained, the encoder portion
is used to produce lower-dimensional representations of the input vectors.
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Fig. 9 We train an autoencoder to learn a 64-dimensional representation for each UI in the repos-
itory, encoding structural information about its layout. This is accomplished by creating training
images that encode the positions and sizes of elements in each UI, differentiating between text and
non-text elements

To create training inputs for the autoencoder that embed layout information, we
constructed a new image for each UI encoding the bounding box regions of all leaf
elements in its view hierarchy, differentiating between text and non-text elements
(Fig. 9). Rico’s view hierarchies obviate the need for noisy image processing or OCR
techniques to create these inputs. In the future, we could incorporate more recent
work on predicting functional semantic labels [37] for elements such as search icon
or login button to train embeddings with even richer semantics.

The encoder has an input dimension of 11,200 and an output dimension of 64 and
uses two hidden layers of dimension 2,048 and 256 with ReLU non-linearities [41].
The decoder has the reverse architecture. We trained the autoencoder with 90%
of our data and used the rest as a validation set, and we found that the validation
loss stabilized after 900 epochs or approximately 5h on an Nvidia GTX 1060 GPU.
Once the autoencoder was trained, we used the encoder to compute a 64-dimensional
representation for each UI, which we expose as part of the Rico dataset.

Figure10 shows several example query UIs and their nearest neighbors in the
learned 64-dimensional space. The results demonstrate that the learned model is
able to capture common mobile and Android UI patterns such as lists, login screens,
dialog screens, and image grids. Moreover, the diversity of the dataset allows the
model to distinguish between layout nuances, like lists composed of smaller and
larger image thumbnails.

4.2 Understanding Material Design Usage in the Wild

Material Design2 is a UI design pattern language introduced by Google in 2014,
which can be applied to user interfaces on many types of computing devices. In this

2 Material Design https://material.io/guidelines/.
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Fig. 10 The top six results obtained from querying the repository for UIs with similar layouts to
those shown on the left, via a nearest-neighbor search in the learned 64-dimensional autoencoder
space. The returned results share a common layout and even distinguish between layout nuances
such as lists composed of smaller and larger image thumbnails (a, b)
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work, we leverage the Rico dataset to understand howMaterial Design has been used
on mobile devices.

Pattern languages have been long used in Human–Computer Interaction (HCI) for
distilling and communicating design knowledge [14, 20]. According to Christopher
Alexander [6], who introduced pattern-based design to architecture, “each pattern
describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice”.

HCI researchers and design practitioners have documented and introduced pattern
languages for generalUI design (e.g., [42, 51]) aswell as awide variety of application
domains, such as learning management systems [9], ubiquitous computing [30],
information retrieval [53], andmanymore. Nonetheless, as Dearden and Finlay point
out, there have been relatively few evaluations of how useful pattern languages are in
user interface design [20]. Since Dearden and Finlay published their critical review,
more evaluations have been done on pattern languages in HCI (e.g., [18, 46, 53]).
But these evaluations are usually limited in at least one of several ways. First, the
pattern languages in those evaluations were often developed in an academic research
setting. Few have been applied to real-world applications. Second, the evaluations
were usually done in lab settings and hence lacked ecological validity. Last, those
evaluations were done at a very small scale (i.e., applying a pattern language to either
one or no more than a handful of systems). As a result of the limitations of how the
field has evaluated pattern languages, we know little about whether pattern languages
in HCI are fulfilling the promise of Alexander—providing design solutions that can
be reused “a million times over”.

The recent success of commercial UI design pattern languages offers a rare oppor-
tunity for us to evaluate the usefulness of pattern languages in HCI at scale and in the
wild. In particular,Material Design seems to have beenwidely adopted by developers
who build applications for Google’s Android operating system. How can we under-
stand the impact of a pattern language in one of the largest computing ecosystems
in the world? This is the first research question we seek to answer in this project.

In addition to developing a method for measuring a pattern language’s overall
impact, we also want to address questions about how and where certain patterns
should be used when they get applied to new use cases. For Material Design, few
patterns have been more controversial, yet at the same time iconic, than the Floating
Action Button (aka, FAB) and the Navigation Drawer (i.e., the hamburger menu).
Tens of thousands of words have been written about the merits and more often the
downsides of these two patterns (e.g., [11, 28, 48] for FAB and [4, 19, 43] for Ham-
burger Menu). Sometimes, the conclusions are daunting. For example, one online
critic said, “...in actual practice, widespread adoption of FABs might be detrimen-
tal to the overall UX of the app” [48]. Even when the criticisms are moderate and
well-reasoned, they are based on the writer’s examination of a limited number of
examples. It is hard to know whether these criticisms reflect the full picture, since
these patterns are likely to be used in a huge number of different apps. Thus, the
second research question driving this work is: How can we examine real-world use
of design patterns to inform debates about UI design?
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We took a data-driven approach to shed light on these two questions, leveraging
the app screenshots and view hierarchies in the Rico dataset and the app ratings
and downloads data from Google Play. Using text mining and computer vision tech-
niques, we built a computational model to detect six widely used UI components
specified in Material Design, including the FAB, the Navigation Drawer, and four
other components. We then used the metadata of the apps in the first dataset to mea-
sure the relationship between the use of certain patterns and the popularity of apps,
as indicated by app ratings and the number of installs. Furthermore, we used app
category data to examine in what domain a certain pattern might be more useful.

Our results show that the use of Material Design is positively correlated with both
the app’s average rating and the number of installs, which we believe is the first
quantitative evidence for the value of a pattern language applied to a large ecosystem
in the wild. Our data analysis further shows that, despite the criticisms the FAB and
the Navigation Drawer have received from vocal writers in the design community,
they are more popular among apps with higher ratings and higher number of installs
than their less popular peers. Furthermore, we found that the use of UI components
varies by app category, suggesting a more nuanced view needed in ongoing debates
about UI design patterns.

4.2.1 Detecting Material Design Elements

Therewere two general stages in our data analysis. First, we detectedMaterial Design
elements in a large number of mobile apps. We focused on six elements in Material
Design: App Bar, Floating Action Button, Bottom Navigation, Navigation Drawer,
Snack Bar, and Tab Layout. Second, we looked for relationships between usage of
Material Design elements and app popularity as well as app category.

The main challenge in our data analysis was to reliably detect Material Design
elements, which lacked standardized names in the app view hierarchies. Therefore, to
detect asmanyMaterialDesign elements as possible froman app (either implemented
with official or unofficialMaterial Design libraries), we leveraged the pixel data from
the apps’ screenshots in the Rico dataset.

Specifically, we used computer vision techniques such as deep Convolutional
Neural Networks (CNNs) to detect Material Design elements from screenshots. To
train these models, we needed positive and negative cropped snapshots of Material
Design elements as training data. To collect the ground truth data, we turned to those
apps that implemented their UIs using the official Material Design library. These
elements were easy to find by class name in the view hierarchy JSON files. In order
to train a good classifier, negative examples of each element also need to be collected
from a relevant location and should not be cropped from a random part of the screen.
To this end, we created a heatmap for each type of element based on the apps using
the official library. With these heatmaps, we cropped the UI regions which did not
useMaterial Design elements. Therefore, for the screenshots which did not include a
Material Design element, we cropped the screenshot based on the most probable part
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Fig. 11 The heatmap of the frequency divided bymaximum value of eachMaterial Design element
in Rico dataset

of the screen (heatmap) for that element to generate negative examples. Figure11
shows the heatmaps of each Material Design element in Rico dataset.

After collecting a set of images for each Material Design element, we used deep
Convolutional Neural Networks to detect Material Design elements in the apps. We
trained a separate classifier for eachMaterial Design element to detect that element in
an app’s screenshot. We selected the AlexNet [29] architecture for our Convolutional
Neural Networks. We trained all the networks from scratch with a learning rate of
0.001 and 50,000 iterations. We split our data into 80% training, 10% validation, and
10% for testing the trained network and got at least 95% of accuracy on each com-
ponent. We used Google’s open-source machine learning platform TensorFlow [5]
to implement all our machine learning models. For detailed information about our
methodology, please refer to [23].

4.2.2 Results of Data Analysis

Our data analysis led to a number of interesting findings about Material Design’s
usage in the wild. We first report the usage of specific elements such as the Floating
Action Button and the Navigation Drawer, two popular but somewhat controversial
patterns inMaterial Design, and how the usage of these elements relate to app ratings,
installs, and categories. We then report the usage of Material Design in general and
examine its impact on app popularity.

4.2.3 Usage of Floating Action Buttons

If the drawbacks of FABs generally outweigh their benefits, as some design critics
argued, one would assume that higher-rated apps would be less likely to use FABs
than those lower-rated apps. To test this hypothesis, we split apps into two groups: a
high-rating group and a low-rating group by the median average rating of all apps in
the Play Store dataset, which was 4.16 at the time of this analysis. The two groups
of apps were balanced and each group had 4673 number of apps.
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Fig. 12 a The percentage of apps using the Floating Action Button (FAB) in the high-rating group
versus the low-rating group. b Box plots of the average ratings of apps using the FAB versus those
not using the FAB. c The percentage of apps using the FAB in the more-installed group versus the
less-installed group. d Box plots of the number of installs of apps using the FAB versus those not
using the FAB

As Fig. 12a shows, there was actually a higher percentage of apps using FABs
in the high-rating group than those in the low-rating group (13.4% vs. 6.6%). The
box plots in Fig. 12b further shows that apps using the FAB were rated higher than
those that did not use it. In fact, 66.6% of apps that used the FAB belonged to the
higher-rating group.

We also used the number of installs as another measure of app popularity. Thus,
we decided to split our apps into two groups: (1) apps with greater than or equal to 1
million installs, and (2) apps with less than 1 million installs. The two groups were
nearly balanced after the split, with 4723 in the more-installed group and 4623 in the
less-installed group. Similar to what we saw in the analysis of FAB usage and app
ratings, apps in the more-installed group appeared to be more likely to feature FABs
than those in the less-installed group (see Fig. 12c). Also, apps using the FAB had a
larger number of installs in comparison to apps without the FAB (see Fig. 12d).

The results above suggest that many developers of popular apps consider the FAB
to be a valuable design pattern. Nonetheless, it’s still possible that the FAB is a more
useful pattern in some situations than others.

To understand where the FABmight bemore useful, we examined the usage of the
FAB by app category. Figure13 shows the top 11 app categories by the percentage of
apps featuring the FAB, excluding categories for which there were too few apps in
the Rico dataset (less than 0.05% of the apps of that category in Google Play). As it
is obvious to see, FAB usage varied considerably among these 11 categories of apps.
The Food and Drink category had the highest percentage of FAB usage among all
the qualified categories. Figure14 shows some of the FABs in the Food and Drink
category. Each thumbnail belongs to a different app but there are FABs with similar
icons in this category, suggesting common usage of the FAB such as suggesting
recipes (the “folk” FAB), locating nearby restaurants (the “location” FAB). Note
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Fig. 13 The top category of apps which used the most FAB by percentage in their category

Fig. 14 Thumbnails of FABs in the Food and Drink category apps

that some of the thumbnails in this picture do not appear to include a FAB, because
they are occluded by another UI component.
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Fig. 15 a The percentage of apps using the Navigation Drawer in the high-rating group versus the
low-rating group. b Box plots of the average ratings of apps using the Navigation Drawer versus
those not using the Navigation Drawer. c The percentage of apps using the Navigation Drawer in
the more-installed group versus the less-installed groups. d Box plots of the number of installs of
apps using the Navigation Drawer versus those not using the Navigation Drawer

4.2.4 Usage of Navigation Drawers

We applied the same analysis to examine the usage of the Navigation Drawer in
Material Design. As we can see in Fig. 15a, there were more apps in the high-rating
group which had a Navigation Drawer than those in the low-rating group (7.3% vs.
3.9%). The box plots in Fig. 15b show that the average rating for apps using the
Navigation Drawer was higher than those that did not use it. Among all the apps that
used the Navigation Drawer, 65% of them belonged to the high-rating group.

Similar to our analysis of the FABusage, we examined the usage of theNavigation
Drawer and the number of app installs. As it is shown in Fig. 15b, apps in the high-
rating group were slightly more likely to feature a Navigation Drawer than those in
the low-rating group. Also, the box plots in Fig. 15d show that apps using Navigation
Drawer had a slightly higher number of installs.

4.2.5 Material Design and App Popularity

We conducted an analysis to understand the usage of Material Design in general and
its relationship to apps’ average ratings and the number of installs. The first step
was to determine if an app used Material Design. We adopted a relatively relaxed
criterion: if an app used one of the six Material Design components our model could
detect, we considered Material Design was used in that app.

First, we examined the relationship between the usage of Material Design and
apps’ average ratings. To this end, we sorted all the apps in the Rico dataset by their
average ratings, split them into one hundred buckets, and calculated the percentage of
apps that usedMaterial Design for each percentile. We then plotted the percentage of
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Fig. 16 Distribution of the percentage of apps using at least one of the six commonMaterial Design
elements over percentiles in average rating (blue) and number of installs (orange)

Material Design usage over average rating percentiles. As we can see in Fig. 16, the
usage of Material Design was highly correlated with the average rating percentile
(with the Pearson correlation coefficient ρ = 0.99 and p-value = 3.1× 10−91). In
other words, as the average rating increased, the percentage of apps using Material
Design also increased.

Next,we examined the relationshipof theusageofMaterialDesign and thenumber
of installs, an alternate measure of app popularity. As in the previous step, we sorted
apps by their number of installs and split them into one hundred equal-sized buckets
by percentile. As shown in Fig. 16, the percent of the apps using Material Design is
also highly correlated to number of installs ρ = 0.94 and p-value = 2.3× 10−47).

4.2.6 Summary

To sum up, we review the two research questions we set out to answer. Our first
research question was How can we understand the impact of a pattern language in
one of the largest computing ecosystems in the world?Wedeveloped a computational
method to measure the relationship between Material Design, the pattern language
in question, and app popularity in the Android ecosystem. We used Convolutional
Neural Networks as a data mining tool to analyze big UI data. We trained multiple
models to detect Material Design elements in apps’ screenshots.

Our second research question was How can we examine real-world use of design
patterns to inform debates about UI design? To answer this question, we examined
the usage of the Floating Action Button and the Navigation Drawer, two frequently
criticized patterns in online design discussions. While our results do not directly
rebut specific arguments against these two patterns, they clearly show that many
developers and designers found these two patterns valuable and use both patterns
frequently in their highly rated and highly popular apps. Moreover, our results have
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suggested that evaluating the merit of a design pattern should consider the context it
is applied to. For example, developers used the FAB more frequently in certain app
categories such as Food and Drink and Parenting than others.

5 Rico in the World

Over the last three years since its release, Rico has been used bymany research teams
as the basis for their own projects. In this section, we attempt to categorize the uses
that Rico has seen to date and highlight a few projects of interest.

We found in our exploration of these use cases that they could be broadly catego-
rized into five areas: (a)mobile ecosystem explorations, (b) UI automation, (c) design
assistance, (d) understanding UI semantics, and (e) automated design. In addition,
efforts in many of these areas have additionally enhanced the Rico dataset itself,
which we will discuss separately. We describe the research in these areas below.

5.1 Mobile Ecosystem Explorations

The research summarized in this section attempts to understand the Android app
ecosystem by using the Rico dataset as a sample. Our ownwork described in Sect. 4.2
falls under this category, where we used Rico to explore the usage of the Material
Design pattern language in the Android app ecosystem.

Micallef et al. used Rico to study the use of login functionality in Android apps
[39]. They found that 32% of apps use at least one kind of login functionality and 9%
provided at least one social login (e.g., Facebook, Google). They found no correlation
between the usage of login features and the number of app downloads or app ratings.

Ross et al. investigated the state of mobile app accessibility using a subset of
the Rico dataset [44]. They specifically focused on the accessibility of image-based
buttons and studied the prevalence of accessibility issues due to missing labels,
duplicate labels, or uninformative labels. They discovered a bi-modal distribution
of missing labels in apps with 46% of apps having less than 10% (46%) of their
image-based buttons labeled and 36% of apps having more than 90% labeled. The
correlation between accessibility, as measured bymissing labels, and app ratings was
found to be weak.

5.2 UI Automation

Several works have used Rico to developmobile UI automation tools and techniques.
One popular use of UI automation is for helping end users. Li et al. look at task
automation in which natural language instructions must be interpreted as a sequence
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of actions on a mobile touch-screen UI [34]. Toward that end, they used a subset
of the Rico dataset, enhanced it with action commands, and created the RicoSCA
dataset. This dataset, along with two other datasets, allowed them to develop models
to map multi-step instructions into automatically executable actions given the screen
information. Sereskeh et al. developed programming by demonstration system for
smartphone task automation called VASTA[47]. They used the Rico dataset to train
a detector for UI elements that powered the vision capabilities of their system.

Another popular use ofUI automation is for testing. Li et al. developedHumanoid,
a test input generator for Android apps [36]. They use the interactions traces from the
Rico dataset to train a deep learning-based model of how humans interact with app
screens. This model is then used to guide Humanoid’s test input generation. Zhang et
al. used Rico to train a deep learning-based model for identifying isomorphic GUIs,
which are GUI’s that may have different contents but represent the same screen
semantically [55]. Although they intend to use such identification to enable robotic
testing for mobile GUIs, this feature could also be useful for crawling mobile apps.
Section2.3 describes how we handled the identification of isomorphic GUIs during
data collection for the Rico dataset.

5.3 Design Assistance

Another popular use of the Rico dataset is to develop data-driven tools to assist
with mobile UI design. An example of such a tool is a search engine for finding
example UIs of interest. Such search engines would enable designers to use relevant
examples early on in the design process for inspiration and to guide their design
process. Section4.1 describes how we used Rico to train an autoencoder to learn an
embedding for UI layouts and used it to demonstrate an example-based search for
UIs which gives the user the ability to search for UIs similar to a UI of interest. Chen
et al. collected an Android UI dataset similar to Rico and used it to train a CNN
to enable searching UIs based on wireframes [15]. Huang et al. developed Swire, a
UI retrieval system that can be queried by using hand-drawn sketches of UIs [27].
This was enabled by training a deep neural network to learn a sketch-screenshot
embedding space for UIs in the Rico dataset and performing a nearest-neighbor
search in that space. Swire is also described in Chapter XX in this book.

Another set of data-driven tools attempt to provide feedback and guide design-
ers, especially novice designers, during the design process. Lee et al. developed
GUIComp, a tool that provides real-time feedback to designers including showing
other relevant examples, predicting user attention characteristics of the design, and
showing design complexity metrics [31]. They used a subset of the Rico dataset as
a basis for their tool and trained an autoencoder to find similar UIs following an
approach similar to that described in Sect. 4.1. Wu et al. developed a tool to predict
user engagement based on the types of animations used within the app [54]. Their
approach was enabled by training a deep learning model on the animations released
as part of the Rico dataset. Finally, Swearngin et al. built upon the Rico dataset to
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create a new dataset for mobile interface tappability using crowdsourcing and then
computationally investigated a variety of signals that are used by typical users to
distinguish tappable versus not-tappable elements [49].

5.4 Understanding UI Semantics

Several recent works have also used the Rico dataset to develop approaches for
developing a taxonomy of UI elements and then building detectors for different UI
element types found in mobile UIs. Liu et al. identified 25 semantic concepts that
are commonly implemented by UI elements, such as next, create, and delete. They
then trained a Convolutional Neural Network (CNN) to detect the corresponding UI
elements in app screens and used it to annotate the elements in Rico dataset. These
semantic annotations are now available for download as part of the Rico dataset.

Moran et al. mined a dataset of app screens similar to Rico and used the resulting
dataset to develop an automated approach for converting GUI mockups to imple-
mented code [40]. To do that, they too developed techniques to detect and classify
different UI elements found in UIs. Chen et al. used the Rico dataset to perform a
large-scale empirical study of seven representative GUI element detection methods
on over 50k GUI images [16].

Finally, Li et al. collected natural language descriptions, called captions, for ele-
ments in the Rico dataset and used it to train models that generate captions for UI
elements (useful for accessibility and language-based interactions) [35]. In this work,
they also augmented Rico with 12K newly crawled UI screens.

5.5 Automated Design

Another area where a UI dataset is essential is for the development of methods for
the automated generation of UIs. Lee et al. developed the Neural Design Network,
an approach to generate a graphic design layout given a set of components with
user-specified attributes and constraints [32]. Gupta et al. developed the Layout-
Transformer, a technique that leverages a self-attention-based approach to learn con-
textual relationships between layout elements and generate new layouts [26]. Both
these works use the Rico dataset to test their approaches for mobile UIs.

5.6 Enhancements to the Rico Approach and Dataset

Several of the research projects discussed above have also enhanced the Rico dataset
with new annotations or additional screens. Liu et al. added semantic annotations
for UI elements (e.g, delete, save, search, etc.) to the Rico dataset [37]. This was
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accomplished by (a) iterative open coding of 73k UI elements and 720 screens, (b)
training a convolutional neural network that distinguishes between icon classes, and
(c) using that network to compute semantic annotations for the 72k unique UIs in the
Rico dataset, assigning labels for 78% of the total visible, non-redundant elements.

Leiva et al. released Enrico, a curated dataset of 1460 mobile UIs drawn from
Rico that are tagged with one of 20 different semantic topics (e.g., gallery, chat,
etc.) [38]. This was accomplished by using human annotators to (a) systematically
identify popular UI screens that have consistent screenshots and view hierarchies in
10k randomly drawn screens from the Rico dataset, (b) create a taxonomy with 19
topics that accurately represented these popular UI screens, and (c) assign each UI
to a topic.

For crowd crawling of apps, new tools are available to offer more support to
crowd workers. For example, Chen et al. developed tools that offer guidance to
crowd explorers that can reduce redundant exploration and increase coverage [17].

6 Discussion

To our knowledge, the Rico dataset remains the largest repository of Android mobile
app designs, and it has been used by many research teams worldwide to facilitate
our understanding of the Android mobile app ecosystem and to create tools and
technologies that advance our use of mobile user interfaces. We are happy that we
chose to release the dataset publicly and are impressed with the follow-on work that
has been done as a result. We hope that others who augment Rico or create their
own new datasets will likewise make them publicly available, as this helps the entire
research community. One challenge for the future is how to aggregate these new
additions and new datasets into a single accessible place, as today those that have
been released are shared in a variety of locations with little standardization.

While Rico continues to be useful, it has weaknesses that we hope to address.
The initial idea to create the dataset was born out of a need to train machine learned
models that incorporated an understanding of the user interface. At the time, we
were interested in creating generative models that could produce full or partial user
interfaces designs. While we ended up not pursuing this direction, this initial use
case is reflected in the type of data collected in the Rico dataset. Our goal was to
collect a nearly complete picture of every app that we explored, including each of its
screens, dialog boxes, etc. In our collection process, we intentionally did not try to
capture data about howhumans used these interfaces, andwe disregarded the tasks for
which the user interfaces might be used, common user behaviors with the interfaces,
and other semantic information and metadata related to the user interfaces. Another
omission in Rico is that it contains no task-related information nor any ecologically
valid traces of human interaction on its UIs. Collecting such data will require new
crowdsourcing techniques, especially at the scale needed for the data to be useful for
deep learning, but would open up the possibility of many new applications that are
not possible with the current dataset.
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Another weakness in Rico is its lack of temporal data; Rico contains a snapshot
of Android UIs collected at just one period of time in early 2017. Presumably many
of the apps in the dataset have changed since they were originally collected, and
certainly, new apps have been created that are not in the dataset. Although we see
little evidence of it so far, models trained from the dataset could suffer from concept
drift if present or futureUIs change sufficiently fromwhatwas recorded in the dataset.
To this end, we hope to capture an updated version of the dataset and release that
publicly at some point in the future.

Finally, Rico contains just data from Android phone UIs in US English. Collect-
ing data from other device types (e.g., tablets), other operating systems (e.g., iOS),
and other internationalization and localization settings beyond US English would
also open up new applications for the dataset. For example, being able to train design
mappings betweenUIs that serve the same function but use different languagesmight
create an opportunity to build automated or semi-automated tools for international-
izing UIs. Training mappings between phone and tablet interfaces could enable the
creation of tools and techniques for improved responsive design.

7 Conclusion

In this chapter, we have:

• Presented the Rico dataset, the largest publicly released repository of Android
mobile app designs, containing data for 72,219 user interfaces from 9,772 apps
spanning 27 Google Play store categories.

• Described the hybrid human plus automation crawling process that was used to
collect the dataset, which increased UI coverage by an average of 40% over human
crawling alone.

• Shown a method of training a UI layout embedding with a deep autoencoder
neural network architecture, which we demonstrated to be effective for searching
for related screens within the Rico dataset.

• Explored the usage of theMaterial Design pattern languagewithin the Rico dataset
through machine learned techniques.

• Summarized the large body of work that others in the research community have
undertaken using the Rico dataset.

While we are humbled by the many systems that have been built to date using
Rico, applications of machine learning to the use and design of user interfaces are
still very early. Further work in this area will continue to be enabled by the creation
of datasets like Rico. We look forward to see what new datasets and applications that
researchers create to make our user interfaces truly intelligent.
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